C - 844

Total Page No. : 4]

[Roll No.

OD-2482

B.C.A. Odd Semester Examination 2024-25

MATHEMATICAL FOUNDATION IN COMPUTER SCIENCE

Paper: III (BCA-103)

Time: 2: 30 Hours] [Max. Marks: 70

Note: Attempt any *five* questions. All questions carry equal marks.

- Q. 1. Attempt any *two* from the following: $[7 \times 2 = 14]$
 - (a) Define a set and provide examples of both finite and infinite sets.
 - (b) Describe the union, intersection, and difference of two sets with examples.
 - (c) What is the power set of a given set? Calculate the power set of {a, b, c}.
 - (d) Explain the concept of a Cartesian product of two sets with an example.
 - (e) What is a binary operation? Give an example of a binary operation on the set of integers.

C-344

(1)

P.T.O.

- (f) Define a relation. Provide examples of reflexive, symmetric, and transitive relations.
- (g) Explain the composition of relations. How is the composition of two relations R and S represented?
 - (h) Define a partial ordering relation. How does it differ from a total ordering relation? Provide an example.

Q. 2. Attempt following:

 $[7 \times 2 = 14]$

- (a) Describe the composition of functions. If f: A → B and g: B → C, what is the composition of g°f? Provide an example.
 - (b) State and explain Peano's axioms. How do they relate to the natural numbers?

Q. 3. Attempt following:

 $[7 \times 2 = 14]$

- (a) What is mathematical induction? Prove that the sum of the first n natural numbers is (n(n+l))/2 using mathematical induction.
- (b) Explain the concept of generating functions. How are they used in solving discrete numeric functions? Provide an example.

C - 344

(2)

 $[7 \times 2 = 14]$

- (a) What is a recurrence relation? Provide an example of a simple recurrence relation with constant coefficients.
- (b) Solve the recurrence relation an=3an-1 + 4 with the initial condition aO=2.

Q. 5. Attempt all from the following:

 $[7 \times 2 = 14]$

- (a) What is asymptotic notation? Explain the significance of Big O, Big Omega (Ω), and Big Theta (Θ) notations in analyzing the efficiency of algorithms.
- (b) Explain the difference between an Abelian group and a non-Abelian group. Provide examples of each.

Q. 6. Attempt following:

 $[7 \times 2 = 14]$

- (a) Given the functions f(n)=3n2+2n and g(n)=n2, determine whether f(n)=0(g(n)), $f(n)=\Omega(g(n))$, or $f(n)=\Theta(g(n))$.
- (b) Describe the concepts of homomorphism, isomorphism, and automorphism in the context of group theory. Provide examples to illustrate each concept.

C-344

メ

(3)

P.T.O.

Q. 7. Write short notes on any four:

 $[3.5 \times 4 = 14]$

- (a) Define a proposition. Provide examples of both a true and a false proposition.
- (b) What is first-order logic, and how does it differ from prepositional logic?
- (c) Explain basic logical operations (AND, OR, NOT, IMPLIES) with truth tables.
- (d) What is a tautology? Give an example of a logical expression that is a tautology.

Q. 8. Attempt following:

 $[7 \times 2 = 14]$

- (a) What is a partially ordered set (poset) ? Provide an example and explain the conditions that make a set a poset.
- (b) Explain what a Hasse diagram is and how it is used to represent a poset.

C - 344