S-2341

M.A./M.Sc. (IVth Semester)

Examination, 2022-23

MATHEMATICS

[Paper - IV (b)]

[Fuzzy Set Theory]

Time: 21/2 Hours]

[Maximum Marks : 80

Note: This question paper consists of two sections, Section A and B. Attempt any four questions each from section 'A' and 'B'. Limit your answers within the given answer book.

B answer book will not be provided or used.

SECTION-A

(Short Answer Type Questions) $4 \times 5 = 20$

- Write a short note on types of Fuzzy sets.
- Prove that the sum and difference of two convex Fuzzy sets are convex.
- 3. Find all the α -level sets and strong α -level set of $\overline{A} = \left\{ \left(x, \mu_A^{-x} \right) = 1 + (x 10)^{-2} \right\}^{-1} \text{ for } \alpha = 0.3, 0.5 \& 0.7$

S-2341/5 (1)

[P.T.O.]

- Let f(a) be a function then f(a) function is defined as
 f(a) = 1 a^w, where w > 0, show that function generates
 the Yager class of Fuzzy complements.
- Show that the properties of symmetry, reflexivity and transitivity are preserved under inversion for both crisp and Fuzzy relations.
- 6. Write a short note on value assignment in relation.
- Prove that following proposition are tautologies :

(a)
$$\overline{p} \Rightarrow (p \Rightarrow q)$$

(b)
$$(p \Rightarrow q) \Rightarrow [\{p \lor (q \land r)\} \Leftrightarrow \{q \land (p \lor r)\}]$$

Write short note on Fuzzy propositions and linguistic variables.

SECTION-B

(Long Answer Type Questions) $4 \times 15 = 60$

Consider the Fuzzy sets A, B and C defined on [0, 10] of real members by the membership grade functions :

$$A(x) = \frac{x}{x+2}$$
, $B(x) = 2^{-x}$, $c(x) = \frac{1}{1+10(x-2)^2}$

then calculate:

- (a) AUBUC
- (b) A ∩ B ∩ C

(c) BOC

S-2341/5

(2)

10. Let f be a decreasing generator. Then a function g defined by g(a) = f(0) - f(a) for any a ∈ [0, 1] is an increasing generator with g(1) = f(0), and its pseudo-inverse g⁽⁻¹⁾ is given by :

$$g^{(-1)}(a) = f^{(-1)}(f(0) - a)$$
 for any $a \in R$

11. Let A and B be two Fuzzy numbers whose membership function are given by:

$$A(x) = \begin{cases} (x+2)/2 & \text{for } -2 < x \le 0 \\ (2-x)/2 & \text{for } 0 < x \le 2 \\ 0 & \text{otherwise} \end{cases}$$

$$B(x) = \begin{cases} (x-2)/2 & \text{for } 2 < x \le 4 \\ (6-x)/2 & \text{for } 4 < x \le 6 \\ 0 & \text{otherwise} \end{cases}$$

Find the Fuzzy numbers A - B, (A·B) and (A/B).

12. Let A, B be two fuzzy numbers, defined as follows:

$$A = \frac{0.2}{[0,1)} + \frac{0.6}{[1,2)} + \frac{0.8}{[2,3)} + \frac{0.9}{[3,4)} + \frac{1.0}{4} + \frac{0.5}{(4,5]} + \frac{0.1}{(5,6]}$$

$$B = \frac{0.1}{[0,1)} + \frac{0.2}{[1,2)} + \frac{0.6}{[2,3)} + \frac{0.7}{[3,4)} + \frac{0.8}{[4,5)} + \frac{0.9}{[5,6)} + \frac{1.0}{6} + \frac{0.5}{(6,7)} + \frac{0.4}{(7,8)} + \frac{0.2}{(8,9)} + \frac{0.1}{(9,10)}$$

Find the solution of equation A + X = B.

13. Let
$$P = \begin{bmatrix} 0.3 & 0.5 & 0.8 \\ 0.0 & 0.7 & 1.0 \\ 0.4 & 0.6 & 0.5 \end{bmatrix}$$
, $Q = \begin{bmatrix} 0.9 & 0.5 & 0.7 & 0.7 \\ 0.3 & 0.2 & 0.0 & 0.9 \\ 1.0 & 0.0 & 0.5 & 0.5 \end{bmatrix}$

Find POQ where 0 is a max-min composition.

14. Find transitive closure R_T (X, X) for the Fuzzy relation R(X, X) defined by the membership matrix:

$$R = \begin{bmatrix} 0.7 & 0.5 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.4 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.8 & 0.0 \end{bmatrix}$$

15. Given that
$$Q = \begin{bmatrix} 0.9 & 0.6 & 1.0 \\ 0.8 & 0.8 & 0.5 \\ 0.6 & 0.4 & 0.6 \end{bmatrix}$$
 and $r = [0.6, 0.6, 0.5]$ solve

the Fuzzy relation equation:

PoQ = r, by using max-min composition.

16. In reference to car speed, we have the following linguistic variables:

A = "Fast" =
$$\frac{0.0}{0} + \frac{0.1}{10} + \frac{0.2}{20} + \frac{0.3}{30} + \frac{0.4}{40} + \frac{0.5}{50} + \frac{0.6}{60} + \frac{0.7}{70} + \frac{0.8}{80} + \frac{0.9}{90} + \frac{1.0}{100}$$

[P.T.O.]

$$B = *Slow* = \frac{1.0}{0} + \frac{0.9}{10} + \frac{0.8}{20} + \frac{0.7}{30} + \frac{0.6}{40} + \frac{0.5}{50} + \frac{0.4}{60} + \frac{0.3}{70} + \frac{0.2}{80} + \frac{0.1}{90} + \frac{0.0}{100}$$

using these terms, find the membership function for the following linguistic terms:

- (a) Very fast
- (b) Very-very fast
- (c) Fairly fast (= (fast)2/3)
- (d) Not very slow and not very fast
- (e) Slow or not very slow
